Sums of Involving the Harmonic Numbers and the Binomial Coefficients
نویسندگان
چکیده
منابع مشابه
Sums Involving the Inverses of Binomial Coefficients
In this paper, we compute certain sums involving the inverses of binomial coefficients. We derive the recurrence formulas for certain infinite sums related to the inverses of binomial coefficients.
متن کاملFinite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers
A variety of identities involving harmonic numbers and generalized harmonic numbers have been investigated since the distant past and involved in a wide range of diverse fields such as analysis of algorithms in computer science, various branches of number theory, elementary particle physics and theoretical physics. Here we show how one can obtain further interesting identities about certain fin...
متن کاملHarmonic Numbers and Cubed Binomial Coefficients
Anthony Sofo Victoria University College, Victoria University, P.O. Box 14428, Melbourne City, VIC 8001, Australia Correspondence should be addressed to Anthony Sofo, [email protected] Received 18 January 2011; Accepted 3 April 2011 Academic Editor: Toufik Mansour Copyright q 2011 Anthony Sofo. This is an open access article distributed under the Creative Commons Attribution License, which...
متن کاملSome Vanishing Sums Involving Binomial Coefficients in the Denominator
We obtain expressions for sums of the form ∑m j=0(−1) j ( m j ) ( n+j j ) and deduce, for an even integer d ≥ 0 and m = n > d/2, that this sum is 0 or 1 2 according as to whether d > 0 or not. Further, we prove for even d > 0 that ∑d l=1 cl−1 (−1) ( n l ) l! (l+1) ( 2n l+1 ) = 0 where cr = 1 r! ∑rs=0(−1)s(rs)(r − s + 1)d−1. Similarly, we show when d > 0 is even that ∑d r=0 ar r! ( n r+1 ) ( 2n ...
متن کاملSeries with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers
We present several generating functions for sequences involving the central binomial coefficients and the harmonic numbers. In particular, we obtain the generating functions for the sequences ( 2n n ) Hn, ( 2n n ) 1 nHn, ( 2n n ) 1 n+1Hn , and ( 2n n ) n m. The technique is based on a special Euler-type series transformation formula.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Computational Mathematics
سال: 2015
ISSN: 2161-1203,2161-1211
DOI: 10.4236/ajcm.2015.52008